Blog Archive for the ‘Clock of the Long Now’ Category

navigateleft Older Articles   

Interview: Alexander Rose and Phil Libin on Long-Term Thinking

Posted on Wednesday, July 19th, 02017 by Ahmed Kabil
link   Categories: Clock of the Long Now, Long Term Thinking, Rosetta   chat 0 Comments

Long Now Executive Director Alexander Rose and former Evernote CEO Phil Libin recently spoke with the design agency Dialogue about the layers of civilization, the future of products, and the Clock of the Long Now.

The interview is wide-ranging, covering everything from the early tech, design and science fiction influences in Rose and Libin’s childhoods to how Long Now’s pace layers theory helps reconcile the tension between long-term planning and Silicon Valley’s fast-paced approach to entrepreneurship and product innovation.

The interview also provides a look at a little-known chapter in Long Now’s history, namely, how Alexander Rose left a career in video games and virtual world design after hearing about The Clock Project:

Stewart told me about The Clock Project. Back then the project was just a conversation between Danny Hillis, Brian Eno, and Stewart, but I just couldn’t get it out of my head when I heard about it. By strange luck, there was a Board meeting a week after where I met Danny for the first time. It was then that he told me he had a funder for the first prototype of the Clock and asked if I wanted to help build it. I immediately said, “Yes, this is what I want to do. I don’t want to work on video games anymore.”

Read Dialogue’s interview with Alexander Rose and Phil Libin in full (LINK).

Watch Stewart Brand and Long Now board member Paul Saffo discuss the Pace Layers of Civilization in a 02015 Conversation at The Interval (LINK).

The Orrery at The Interval: An Invitation to Long-Term Thinking

Posted on Monday, April 24th, 02017 by Ahmed Kabil
link   Categories: Clock of the Long Now, Long Term Science, Long Term Thinking, The Big Here, The Interval   chat 0 Comments

As visitors to Fort Mason amble past The Interval, the Long Now Foundation’s cafe-bar-museum-venue space, some are drawn, as if by gravitational pull, to an unusual eight foot-tall stainless steel technological curiosity they glimpse through the glass doors. Metal gears sit stacked one on top of the other to form a tower, with geneva wheels jutting out like staircase steps. Halfway up, the structure blooms into a globe of crisscrossing rings of metal, with seven orbs of differing color and size strung along them.

It is the Long Now Orrery, a twenty-first century interpretation of an ancient device that tracks the relative position of the six planets visible to the naked eye (Mercury through Saturn) as they make their way around the sun.



Orreries came in vogue in Europe during the Age of Enlightenment, where they were deployed as aids to teach a largely non-scientific public about the new heliocentric universe being revealed by the Scientific Revolution. After centuries of believing the Earth was the static, privileged center of the universe, orreries helped the European imagination re-calibrate to a bigger here and a longer now.

The Orrery at the Interval has much the same role. It is both a mechanism and an icon. As a mechanism, it functions as the first working prototype of an orrery that will help the 10,000 Year Clock tell time through the millennia. The one in the clock will be four times as large. As an icon, the Orrery draws people into the orbit of long-term thinking and opens up a space for conversations about our place in the universe.

Here’s how it works.

 

I. The Center of the Universe (01543)

The Ptolemaic understanding of the universe, with the Earth stationary at the center. By Cellarius, Harmonia Macrocosmical, (01660).

It is clear, then, that the earth must be at center and immovable.

—ARISTOTLE, De Caelo

It was something of an open secret in seventeenth century European astronomy circles: the Earth revolved around the sun.

The notion was not without historical precedent. In 01514, when Nicolaus Copernicus began privately circulating his theory on planetary motion, he cited the Greek astronomer Aristarchus of Samos, who proposed a heliocentric model of the universe in the third century BCE.

An armillary sphere in a painting by Florentine Italian artist Sandro Botticelli, (c. 01480). Via Wikipedia.


But in the context of early modern Europe, the implications were profound, and appeared to contradict both common sense and the Bible. Since the time of Ptolemy (ca. 150 AD), the West conceived of the cosmos in anthropocentric and geocentric terms. This cosmographic understanding was reflected in calendars, maps and the armillary sphere, an ornate physical model of the cosmos consisting of a spherical framework of rings that mapped celestial longitude and latitude from the Earth’s perspective.

A drawing by Nicolaus Copernicus of the heliocentric model of the Solar System with the Earth revolving around the Sun. From his On The Revolutions of The Heavenly Spheres (01543).

 

Now, in the model put forth by Copernicus, the Earth was reduced to a mere point in a sun-centered universe, no more special than its celestial neighbors. Anticipating the upheavals his ideas would bring about, Copernicus delayed publishing On the Revolutions of the Heavenly Spheres until 01543, the year after his death and the year most historians point to as the start of the Scientific Revolution.

Galileo’s discovery of the four moons of Jupiter using the newly invented telescope in January 01610 proved that the solar system contained celestial bodies that did not orbit Earth. And Newton’s theories of universal gravity and gravitational attraction, first proposed in 01687, explained why planets orbit along elliptical trajectories—something first inferred by the German astronomer Johannes Kepler in 01609.

But it would take more than observation and theory for Europeans at large to shake the notion that the Earth was not the center of the universe.

It would take the orrery.

 

II. Round the Gilded Sun (01704)

An orrery of John Rowley. Detail of an engraving from The Universal Magazine (01749).

 

O! pray! move on, Sir, said she, this is amazingly fine: I fancy myself travelling along with that little Earth in its course round the gilded Sun, as I know I am in reality with that on which I stand, round the real one.

—JOHN HARRIS, Astronomical Dialogues, (01725)

Astronomers and scientists began constructing orreries to get celestial bearings in this new Copernican universe. The orrery built on the armillary sphere, but with a Copernican twist: viewers would not only be able to see this new universe in miniature; they’d be able to track the movements of its planets over time.

The deeper, theological implications of heliocentrism were baked into the design. As Denis Cosgrove, in his cartographic genealogy of the Earth in the Western imagination (02001), writes:

The Creator’s disengagement from an active presence was implicit in the new cosmology, and had profound implications for global images and meanings. Unlike the armillary, the orrery’s meaning lies in motion: inert matter is driven by forces that once set in motion continue to operate independently as the variously sized spheres revolve at divergent speeds.

George Graham’s orrery and its mechanism, constructed sometime between 01704-01709. Via Museum of the History of Science, Oxford.


The credit for inventing the first modern orrery is disputed. The device would not answer to the name until famed inventor John Rowley presented one to Charles Boyle, the Fourth Earl of Orrery, in 01713. Rowley — and, more rarely, Orrery himself — is sometimes credited as the orrery’s inventor, but Rowley based his model’s design on a proto-orrery created in 01704 by English clockmakers George Graham and Thomas Tompion. Graham and Tompion’s model was simple, displaying only the Earth and its orbiting moon as it made its way across the sun.

 Stukeley’s drawing of Hales’ orrery. It bears the inscription: ‘This was a drawing I made at CCCC from a machine invented and executed by Mr. Stephen Hales, about 1705.’ Via Geared to the Stars (01978).


Then there’s the matter of William Stukeley, a physician and friend of Isaac Newton who, as Henry C. King (01978) puts it, “had the unfortunate habit of adding retrospective notes and passages to his early diaries.” Stukeley believed that it was Stephen Hales, a classmate from his days at Cambridge, and not Rowley, who was the orrery’s true inventor. In a 12 December 01752 diary entry, he writes:

about the year whilst I resided in Bennet Coll. [Chorpus Christi] where Dr. Hale [sic] was then fellow, at his request I made a drawing, which I had still by me, of a planetarium made by Dr. Hale. It was a machine to shew the motion of the earth moon & planets, in the nre [nature] of what they have since made in London, by the name of Orrerys. Dr. Hales proposed to me that we shd make another, upon an improv’d design, but my father dying, whilst I was undergraduate, wh making my stay at college somewhat uncertain, the design was dropped.

An animation of the 21 plates of Edward Quin’s 01830 atlas, which mapped the “Known World” from 2348 BCE to 01828. Via Slate.


These competing claims for provenance in the early eighteenth century occurred against the backdrop of a rapidly changing world. Philosophers and scientists vaunted reason and empirical observation as the sources of authority, contradicting the church. Seafarers and traders navigated across unmapped waters, bringing back with them astronomical knowledge that fueled global competition among European states. This competition, in turn, drove many clockmakers to produce devices of ever greater precision, not just for navigators for the lay public as well. “Knowledge of the terrestrial globe, its place in the solar system, and its geographical patterns,” writes Cosgrove, became “a prerequisite for educated men and women.”

“The Compleat Orrery described by Mr. S. Dunn” (01780). Via Geared to the Stars (01978).


As Henry C. King writes in his history of orreries, planetaria, and astronomical clocks (01978):

Some of the best work went into machines made for kings, princes, and wealthy patrons, but towards the end of the eighteenth century in England public interest in Newtonian natural philosophy encouraged instrument-makers to consider a wider market for their products. Like Blaeu and Moxon of an earlier age, they found it worthwhile to make machines that sacrificed ornamentation, but not necessarily craftsmanship, for scientific excellence and educational merit. The study of astronomy no longer became the prerogative of a chosen few but was laid open to the understanding of any literate person, regardless of social and educational background.

Orreries grew more popular and advanced as the Enlightenment swept Europe over the eighteenth century. They came to be seen as more than just a visual instruction in the new science; they were desirable possessions and icons of the scientific method. Most importantly, they succeeded in reorienting a largely non-scientific public to a perspective that could see the implications of Copernicanism as obvious, instead of radical.

A Philosopher Lecturing on the Orrery (01766), by Joseph Wright. Via Wikipedia.


Joseph Wright of Derby’s A Philosopher Lecturing on the Orrery (01766) underscores the Enlightenment Age shift from traditional religious models towards ones based on reason and empirical observation. A domestic group of eight gathers round an orrery, its sun represented by a candle so illuminating that a man sitting to its right must shield his eyes. A scholar leans over the orrery, explaining its mechanics and underlying Newtonian principles. Breaking from artistic tradition, the faces of the two boys sitting at the orrery’s edge express the kind awe and wonder normally reserved for religious events and icons.

As art historian Abram Fox puts it:

According to the French academies of art, the highest genre of painting was history painting, which depicted Biblical or classical subjects to demonstrate a moral lesson. This high regard for history painting was adopted by the British. Wright took this noble, aggrandizing method of portraying events and applied it to a composition showing a contemporary subject in A Philosopher Lecturing at the Orrery.

Rather than a moral of leadership or heroism, this painting’s “moral” is the pursuit of scientific knowledge. With its collection of non-idealized men, women, boys, and girls informally arranged in a small physical space around a central organizing point, Wright’s painting mimics the compositional structure of a conversation piece (an informal group portrait), but with the dramatic lighting and scale expected from a major religious scene.

In effect, A Philosopher Lecturing at the Orrery does depict a moment of religious epiphany. The figures listening to the philosopher’s lecture in Wright’s painting are experiencing conversion…to science.

The Orrery in Aughra’s observatory in The Dark Crystal (01982).


Orreries eventually fell out of favor as the modern world developed and the Copernican perspective became the default way of understanding the world. Mechanical orreries are still being built, but they are more works of art than instruction aid. Today, few outside horology and cosmography would be familiar with the term “orrery,” though orreries have occasionally made pop culture cameos, notably in climactic, high stakes scenes in The Dark Crystal (01982) and Tomb Raider (02001).

A fragment of the Antikythera mechanism. The scales on Fragment C divide the year by days and signs of the zodiac. Via Smithsonian.


But orreries still have lessons to teach. The discovery of the Antikythera mechanism, a proto-orrery and analogue computer dating back to 200 BCE that displayed the diurnal motions of the Sun, Moon and the five known planets, has challenged our assumptions about antiquarian astronomy and technology. Found in a 01901 shipwreck off the Greek coast by sponge divers, the Antikythera mechanism mystified scholars until 02006, when advances in x-ray technology revealed a hidden differential gear — thought to be an eighteenth century invention.

Despite their obscurity, orreries remain a useful tool to educate students about foundational ideas in astronomy. Human orreries have launched at a number of universities, where students play the role of the “planets,” and use their positions as modeled by the orrery to predict what they’ll see in the sky that night. Increased computing power has led to the advent of digital orreries for students to easily track planetary motion.

Photo by Bassam Khabieh / Reuters, March 2, 02017


In March 02017, war photographer Bassam Khabieh visited a school damaged by airstrikes in the rebel-held city of Douma in Syria. After six years of civil war, the country’s education system has been decimated. Teachers in ISIS territory risk their lives if they teach lessons that do not cohere to ISIS ideology.

In one of Khabieh’s photographs, a damaged orrery stands amidst the dusty rubble, the plastic sphere of Earth dislodged from its mount.

 

III. A Prototype for the Queen (01999)

The First Prototype of the 10,000 Year Clock on display at the Science Museum in London

 

At Long Now Foundation we’ve always resisted the idea of turning the institution into a religion — even though religions may have the best track record for long-term endurance. But the comparison to monks devoting their lives to maintain a remote and long-lived clock is hard to avoid, especially if you show up at a momentous clock event in a hooded robe.

—KEVIN KELLY

As the seconds ticked towards a new millennium, Long Now co-founder Stewart Brand stood contemplatively before the first prototype of the Clock of the Long Now in a hooded robe, waiting.

On the left is Brand during his 01966 Whole Earth campaign. On the right, Brand stands before the first Clock prototype on New Year’s Eve, 01999.


Thirty four years earlier, Brand mounted a successful campaign to have NASA release the first photographs of the whole earth from space. Now, on the eve of the millennium, Brand, Danny Hillis, Brian Eno and the Long Now Foundation were attempting to build something that would do for thinking about time what the photographs of the Earth did for thinking about the environment.

“Such icons reframe the way people think,” Brand wrote in 01999.

Cosgrove writes that like the the Copernican orrery, the image of a vital planet floating in the cosmic void helped catalyze a revolution in the global imagination, prefiguring the modern environmental movement and rise of globalization:

The Copernican revolution was secured through the circulation of cosmographic images that challenged ways of imagining and experiencing not only planetary arrangement and movement but the entire arrangement in which human existence was created and performed.

Twentieth-century photographic images of the earth have stimulated equally profound changes in perceptions of society, self, and the world. Both sets of images demarcate key moments in the evolution of the ‘globalized’ earth.

Earthrise, seen for the first time by human eyes, 24 December 01968. Via NASA.


The first step to making an iconic clock is making a clock that works. The clock prototype was completed in a frenzied rush only hours before midnight, after three years of research and design. Brand, Hillis and some dozen others gathered in the offices of the Internet Archive in San Francisco’s Presidio district to see if it would tick.

“It was a very strange scene,” Kevin Kelly recalled.

“Because of hysteria about Y2K, the Presidio was blockaded with a police checkpoint. No one else was around the usually busy park. It was a like a secret society meeting. Stewart had just returned from a vacation in Morocco a day before so he was wearing a djellaba. He looked like a monk overseeing the clock’s big moment.”

A hush swept the room as the final seconds counted down. 3…2…1. Clicking gears whirred into place. And then: GONG! A chime rang in the new century. And: GONG! Another chime signaled the start of a new millennium.

Like clockwork.

In the months that followed, Long Now presented the prototype at TED before installing it at the Science Museum in London. It was the culminating piece of the museum’s “Making of the Modern World” exhibit, which was opened by the Queen of England. The prototype remains there today on permanent loan.

“We realized it was kind of sad to have built the Prototype but not have one of our own,” Long Now Executive Director Alexander Rose recalled. “Don’t get me wrong: it’s in a fantastic museum in a fantastic location, but it would’ve been nice to have a prototype for ourselves.”

A wood-engraved frontispiece illustrating “a small portion of Mr Babbage’s Difference Engine,” (01872). Via Hordern House.


Enter Nathan Myhrvold, then-CTO of Microsoft. He was using a unique funding model to finance the Science Museum’s efforts to construct the difference engine that Charles Babbage designed in 01849 but, because of the limits of machine technology at the time, was not able to build. Myhrvold and the Science Museum agreed that if he were to fund the construction of two iterations of Babbage’s machine, he’d get to keep one.

The Babbage Difference Engine, built by the Science Museum of London in 02002, 153 years after it was first designed. Via Computer History.


Myhrvold reached out and made the same deal with Long Now, financing its efforts towards building a second Clock prototype. At the time, Rose and Danny Hillis had only a notional idea as to what that prototype would be.

Hillis decided that, rather than build a full clock, he’d design a part of the clock that would be the planetary display. Like the first prototype, such a device would require tackling unprecedented design problems raised by keeping track of, and lasting through, deep time. Unlike the first prototype, Long Now would get to keep a copy this time.

 

IV. A Robust and Durable Computer (02005)

“I love that thing,” says Francis Pedraza, an Interval regular, when I ask him about the Orrery over his afternoon tea. He’s never heard the term “orrery,” which he jots down in his notebook as soon as I mention it. But he has a good guess as to what it does.

“Check it out,” Pedraza says, raising his left wrist to show me his Apple Watch. Its face displays a digital orrery of the solar system. A simple twist of the crown by Pedraza sends the planets scurrying forward or backward in time across their celestial trajectories, displaying effortlessly what took Early Modern European scientists painstaking precision to engineer.

“It’s great,” Pedraza says. “People see that I’m wearing a watch, and they ask me the time. And I say: ‘It’s half past Mars!’”

If Pedraza were so inclined, he could twist the crown to 10,000 years into the future (it would likely take a few hours). But with planned obsolescence baked in, Pedraza’s watch would be lucky to last another two years. The Long Now Orrery, on the other hand, must be a precise and durable computer for 10,000 years.

A fragment of a Roman nundinae for the month of April (Aprilis), showing its nundinal letters on the left side. Via Wikipedia.


On its face, an orrery may seem an unlikely technology to depend on for the long term. But it makes sense when one considers how the way we’ve measured time has changed throughout history. It’s likely that our current use of hours, minutes, weeks and months may be as obscure and forgotten as the nundina, the akhet, or the gesh several millennia from now.

The day, the year, and the movements of the other planets in our solar system, on the other hand, aren’t subject to the whims of those in power or passing cultural trends. The 10,000 Year Clock keeps track of these robust units of time. The Clock’s main dial keeps track of the Sun, Moon and stars while The Orrery models our solar system.

 
Danny Hillis, Long Now Co-Founder and designer of the Clock and Orrery. Via Discover Magazine.


“If you came up to the clock thousands of years from now,” said Danny Hillis, “You could still read the time, even if you did not have the same time system we have now.”

The prototype is designed to update each planet’s position twice a day, providing something of a kinetic sculpture of the Long Now as a time scale: Mercury completes one revolution in about 88 days; the Earth takes exactly one solar year; Saturn makes it around the Sun in just under thirty years.

Each of the Orrery’s planets is ground from a stone that resembles the celestial body it represents. The Sun is made of yellow calcite; Mercury of meteorite; Venus of lemon yellow Mexican calcite; Earth of Chilean lapis; Mars of red Namibian Jasper; Jupiter of banded sandstone; and Saturn, of banded Utah onyx.

It took over a year of searching for Alexander Rose to find the perfect stones. “You get the right idea of what stone you want, but then you have to get the right one,” he recalled. “They can come in all shapes and patterns, and by the time it gets ground down to the right size you don’t know if it’s going to look like the planet. With the Earth, we knew wanted Chilean lapis, which has those cloudy inclusions not seen in regular blue lapis, but then it was a question of finding one that had the right cloud patterns and continents.”

The Orrery was conceptualized by Danny Hillis, with project management and additional design by Alexander Rose. The lead engineer was Paolo Salvagione, and the lead machinist and fabricator was Christopher Rand. Other machinists included Erio Brown, Brian Roe, Mark Ribaud, Reason Bradley, General Precision, Oakland Machine Works, Jim Johnson, Brian Ford, Ebin Stromquist. The base was fabricated by Seattle Solstice.


Most traditional clocks perform their mathematics in the orientation of gears around an axis. A gear measured this way can be in an infinite number and continuous number of states (an analog representation).

The problem with building a 10,000 year clock using gears is that the gears can slowly wear down and slip, allowing inaccuracy to build up within the system over long periods of time. Even the best made clocks in the world will experience this after a few hundred years. To address this, Danny Hillis invented the Serial Bit Adder. The Serial Bit Adder is a simple mechanical binary computer that converts continuous motion from the gear (analog energy), into a digital output.

The crucial mathematical logic for the bit adders is represented in the positions of the pins, which can only ever be in one of two states (digital), even if they become significantly worn. The bit adders calculate how much to move the planets in the display based on the known input of two rotations per day by the Orrery’s central shaft. As that shaft rotates it also turns the 6 bit adder disks: one for each planet.

A bit adder consists of a rotating disk and two sets of 27 mechanical pins. Each individual pin can be in one of two states, and each set of pins taken altogether represents a 27 bit number. One set of pins is immovable — these are set based on the calculation that particular bit adder must perform; they are, in other words, the program. The other set of pins can move between the two possible states; they represent an accumulator.

The Orrery’s base, featuring the serial bit adder.


As the bit adder’s disk rotates, a portion of the disk reads the program from the unmoving bits and is moved by them. Its movements cause the other set of bits to be flipped as necessary. Each time the adder rotates, it adds the number encoded in the static pins into the number encoded by the moveable ones. That number is a fraction between zero and one. As the outer pins accumulate the value represented by the inner pins, their value grows towards one. When they surpass a value of one, the adder produces an output that adjusts its corresponding planet by way of engaging a 6-sided Geneva wheel. In this way, a precise ratio can be calculated based on the two daily rotations of the central shaft and applied to the planets in the display.

Author Neal Stephenson, who based his book Anathem (02008) partly on the 10,000 Year Clock, at the unveiling of the Orrery.


The Orrery was completed in 02005, and displayed at Long Now’s Fort Mason headquarters back when the space was a museum. In the lead up to designing and building the Interval, Alexander Rose knew the Orrery would be crucial component from an experience design perspective.

“It was obviously this shiny metal object,” said Rose. “By centering it by the front doors, it becomes the focal point when you walk in.”

“We had two goals with the walk-in experience: to suck you in from outside with the Orrery, and to force you to look up. That’s what the big wall of books for the Manual for Civilization is about.”

“Studies in psychology have shown that when you look up, you’re primed for an awe experience,” Rose says. “The Orrery was meant as the eye candy visible from outside to get you inside. The books behind it are what change your perspective and inspire you to move around the space.”

 

V. Human Orreries (02017–10,000)

Back at The Interval, Pedraza brings up what, for some, is an uncomfortable truth: despite our post-Copernican knowledge that the Earth revolves around the Sun, many of us still maneuver through the world with the assumption that we are the center of the universe.

The author David Foster Wallace addressed this tendency towards self-centeredness in a commencement address to the graduates of Kenyon College in 02005:

Here is just one example of the total wrongness of something I tend to be automatically sure of: everything in my own immediate experience supports my deep belief that I am the absolute center of the universe; the realest, most vivid and important person in existence.

We rarely think about this sort of natural, basic self-centeredness because it’s so socially repulsive. But it’s pretty much the same for all of us. It is our default setting, hard-wired into our boards at birth.

Think about it: there is no experience you have had that you are not the absolute center of. The world as you experience it is there in front of YOU or behind YOU, to the left or right of YOU, on YOUR TV or YOUR monitor.

“If we consider that thing for a second,” Pedraza says, pointing to the Orrery and starting to scribble in his pad. “It’s this expanded long-term view of where we fit into the universe. It’s not where most people are hanging out.”

“If we imagine instead an orrery with a human as the globe at the center,” he continues, “the orbits of their concerns are very immediate in a time sense. Very short-term instant gratification. Very ‘this week’ and ‘what now?’ focused.”

Sketch by illustrator Dan Bransfield.


He shows me a drawing of a human orrery orbited by different spheres of obligations, roles, and time considerations.

“You guys are trying to get them from thinking like this,” he says, pointing to his drawing, “to that,” pointing to the Orrery. “That’s a hell of a challenge.”

Perhaps Pedraza is right. But that does not make the effort any less necessary. And the Orrery at the Interval — mechanism, icon, “shiny metal object” — is an essential component of that effort. It draws passers-by to the threshold of long-term thinking, inviting them to expand the orrery of their concerns to include not just the spheres of their immediate orbit, but the Earth as well; and not just for the present interval, but the next ten thousand years, too.

 

These 1,000-Year-Old Windmills Work Perfectly, But Their Future is in Doubt

Posted on Monday, April 10th, 02017 by Ahmed Kabil
link   Categories: Clock of the Long Now, Millennial Precedent   chat 0 Comments

From National Geographic comes a video profiling the durable windmills of Nashtifan, Iran. These windmills constructed over a thousand years ago out of clay, straw and wood are not only still standing; they work just as well as they did when they were first built.

In designing and building the Clock of the Long Now, we have investigated many technologies built for the long-term. Some, like Iran’s windmills and Japan’s Ise Shrine, are ancient. Others, like the Svalbard Global Seed Vault, the Yucca Mountain nuclear waste repository, and the Mormon Genealogical Vault, are more recent efforts. All offer important lessons in why some technologies last and others do not.

Muhammad Etebari is the last custodian of the Northeast Iran’s ancient windmills.

Long Now Executive Director Alexander Rose, discussing his excursions to these remote sites in a 02011 Seminar, noted that one of the main reasons a technology lasts is because there are people and institutions built to maintain it. In the case of the Nashtifan windmills, Muhammad Etebari is the last remaining custodian of the mills, and he cannot find an apprentice. After centuries of keeping the windmills running by passing the responsibility of maintenance from generation to another, the future of the ancient durable windmills of Nashtifan is now in doubt.

 

Watch National Geographic’s “See the 1,000-Year-Old Windmills Still in Use Today”

Watch Alexander Rose’s 02011 Long Now Seminar “Millennial Precedent” in full.

The 10,000-Year Geneaology of Myths

Posted on Wednesday, February 8th, 02017 by Ahmed Kabil
link   Categories: Clock of the Long Now, Long Term Science, Long Term Thinking, Seminars   chat 0 Comments

The “Shaft Scene” from the Paleolithic cave paintings in Lascaux, France.

The “Shaft Scene” from the Paleolithic cave paintings in Lascaux, France.

ONE OF THE MOST FAMOUS SCENES in the Paleolithic cave paintings in Lascaux, France depicts a confrontation between a man and a bison. The bison appears fixed in place, stabbed by a spear. The man has a bird’s head and is lying prone on the ground. Scholars have long puzzled over the pictograph’s meaning, as the narrative scene it depicts is one of the most complex yet discovered in Paleolithic art.

To understand what is going on in these scenes, some scholars have started to re-examine myths passed down through oral traditions, which some evidence suggest may be far older than previously thought. Myths still hold relevance today by allowing us to frame our actions at a civilizational level as part of a larger story, something that we hope to be able to accomplish with the idea of the “Long Now.”

Historian Julien d’Huy recently proposed an intriguing hypothesis[subscription required]: the cave painting of the man & bison could be telling the tale of the Cosmic Hunt, a myth that has surfaced with the same basic story structure in cultures across the world, from the Chukchi of Siberia to the Iroquois of the Northeastern United States. D’Huy uses comparative mythology combined with new computational modeling technologies to reconstruct a version of the myth that predates humans’ migration across the Bering Strait. If d’Huy is correct, the Lascaux painting would be one of the earliest depictions of the myth, dating back an estimated 20,000 years ago.

The Greek telling of the Cosmic Hunt is likely most familiar to today’s audiences. It recounts how the Gods transformed the chaste and beautiful Callisto into a bear, and later, into the constellation Ursa Major. D’Huy suggests that in the Lascaux painting, the bison isn’t fixed in place because it has been killed, as many experts have proposed, but because it is a constellation.

Comparative mythologists have spilled much ink over how myths like Cosmic Hunt can recur in civilizations separated by thousands of miles and thousands of years with many aspects of their stories intact. D’huy’s analysis is based off the work of anthropologist Claude Levi-Strauss, who posited that these myths are similar because they have a common origin. Levi-Strauss traced the evolution of myths by applying the same techniques that linguists used to trace the evolution of words. D’Huy provides new evidence for this approach by borrowing recently developed computational statistical tools from evolutionary biology.  The method, called phylogenetic analysis, constructs a family tree of a myth’s discrete elements, or “mythemes,” and its evolution over time:

Mythical stories are excellent targets for such analysis because, like biological species, they evolve gradually, with new parts of a core story added and others lost over time as it spreads from region to region.  […] Like genes, mythemes are heritable characteristics of “species” of stories, which pass from one generation to the next and change slowly.

A phylogenetic tree of the Cosmic Hunt shows its evolution over time

This new evidence suggests that the Cosmic Hunt has followed the migration of humans across the world. The Cosmic Hunt’s phylogenetic tree shows that the myth arrived in the Americas at different times over the course of several millennia:

One branch of the tree connects Greek and Algonquin versions of the myth. Another branch indicates passage through the Bering Strait, which then continued into Eskimo country and to the northeastern Americas, possibly in two different waves. Other branches suggest that some versions of the myth spread later than the others from Asia toward Africa and the Americas.

Myths may evolve gradually like biological species, but can also be subject to the same sudden bursts of evolutionary change, or punctuated equilibrium. Two structurally similar myths can diverge rapidly, d’Huy found, because of “migration bottlenecks, challenges from rival populations, or new environmental and cultural inputs.”

Neil Gaiman

Neil Gaiman, in his talk “How Stories Last” at Long Now in 02015, imagined stories in similarly biological terms—as living things that evolve over time and across mediums. The ones that persist are the ones that outcompete other stories by changing:

Do stories grow? Pretty obviously — anybody who has ever heard a joke being passed on from one person to another knows that they can grow, they can change. Can stories reproduce? Well, yes. Not spontaneously, obviously — they tend to need people as vectors. We are the media in which they reproduce; we are their petri dishes… Stories grow, sometimes they shrink. And they reproduce — they inspire other stories. And, of course, if they do not change, stories die.

Throughout human history, myths functioned to transmit important cultural information from generation to generation about shared beliefs and knowledge. “They teach us how the world is put together,” said Gaiman, “and the rules of living in the world.” If the information isn’t clothed in a compelling narrative garb—a tale of unrequited love, say, or a cunning escape from powerful monsters— the story won’t last, and the shared knowledge dies along with it. The stories that last “come in an attractive enough package that we take pleasure from them and want them to propagate,” said Gaiman.

Sometimes, these stories serve as warnings to future generations about calamitous events. Along Australia’s south coast, a myth persists in an aboriginal community about an enraged ancestor called Ngurunderi who chased his wives on foot to what is today known as Kangaroo Island. In his anger, Ngurunderi made the sea levels rise and turned his wives into rocks.

Kangaroo Island, Australia

Linguist Nicholas Reid and geologist Patrick Nunn believe this myth refers to a shift in sea levels that occurred thousands of years ago. Through scientifically reconstructing prehistoric sea levels, Reid and Nunn dated the myth to 9,800 to 10,650 years ago, when a post-glacial event caused sea levels to rise 100 feet and submerged the land bridge to Kangaroo Island.

“It’s quite gobsmacking to think that a story could be told for 10,000 years,” Reid said. “It’s almost unimaginable that people would transmit stories about things like islands that are currently underwater accurately across 400 generations.”

Gaiman thinks that this process of transmitting stories is what fundamentally allows humanity to advance:

Without the mass of human knowledge accumulated over millennia to buoy us up, we are in big trouble; with it, we are warm, fed, we have popcorn, we are sitting in comfortable seats, and we are capable of arguing with each other about really stupid things on the internet.

Atlantic national correspondent James Fallows, in his talk “Civilization’s Infrastructure” at Long Now in 02015, said such stories remain essential today. In Fallows’ view, effective infrastructure is what enables civilizations to thrive. Some of America’s most ambitious infrastructure projects, such as the expansion of railroads across the continent, or landing on the moon, were spurred by stories like Manifest Destiny and the Space Race. Such myths inspired Americans to look past their own immediate financial interests and time horizons to commit to something beyond themselves. They fostered, in short, long-term thinking.

James Fallows, left, speaking with Stewart Brand at Long Now

For Fallows, the reason Americans haven’t taken on grand and necessary projects of infrastructural renewal in recent times is because they struggle to take the long view. In Fallows’ eyes, there’s a lot to be optimistic about, and a great story to be told:

The story is an America that is not in its final throes, but is going through the latest version in its reinvention in which all the things that are dire now can be, if not solved, addressed and buffered by individual talents across the country but also by the exceptional tools that the tech industry is creating. There’s a different story we can tell which includes the bad parts but also —as most of our political discussion does not—includes the promising things that are beginning too.

A view of the underground site of The Clock looking up at the spiral stairs currently being cut

When Danny Hillis proposed building a 10,000 year clock, he wanted to create a myth that stood the test of time. Writing in 01998, Long Now co-founder Stewart Brand noted the trend of short-term thinking taking hold in civilization, and proposed the myth of the Clock of the Long Now:

Civilization is revving itself into a pathologically short attention span. The trend might be coming from the acceleration of technology, the short-horizon perspective of market-driven economics, the next-election perspective of democracies, or the distractions of personal multi-tasking. All are on the increase. Some sort of balancing corrective to the short-sightedness is needed-some mechanism or myth which encourages the long view and the taking of long-term responsibility, where ‘long-term’ is measured at least in centuries. Long Now proposes both a mechanism and a myth.

The Future Will Have to Wait

Posted on Friday, January 6th, 02017 by Alexander Rose - Twitter: @zander
link   Categories: Clock of the Long Now, Futures   chat 0 Comments

Eleven years ago this month, Pulitzer Prize winning author Michael Chabon published an article in Details Magazine about Long Now and the Clock.  It continues to be one of the best and most poignant pieces written to date…

chabonfuture

The Future Will Have to Wait

Written by Michael Chabon for Details in January of 02006

I was reading, in a recent issue of Discover, about the Clock of the Long Now. Have you heard of this thing? It is going to be a kind of gigantic mechanical computer, slow, simple and ingenious, marking the hour, the day, the year, the century, the millennium, and the precession of the equinoxes, with a huge orrery to keep track of the immense ticking of the six naked-eye planets on their great orbital mainspring. The Clock of the Long Now will stand sixty feet tall, cost tens of millions of dollars, and when completed its designers and supporters, among them visionary engineer Danny Hillis, a pioneer in the concept of massively parallel processing; Whole Earth mahatma Stewart Brand; and British composer Brian Eno (one of my household gods), plan to hide it in a cave in the Great Basin National Park in Nevada [now in West Texas], a day’s hard walking from anywhere. Oh, and it’s going to run for ten thousand years. That is about as long a span as separates us from the first makers of pottery, which is among the oldest technologies we have. Ten thousand years is twice as old as the pyramid of Cheops, twice as old as that mummified body found preserved in the Swiss Alps, which is one of the oldest mummies ever discovered. The Clock of the Long Now is being designed to thrive under regular human maintenance along the whole of that long span, though during periods when no one is around to tune it, the giant clock will contrive to adjust itself. But even if the Clock of the Long Now fails to last ten thousand years, even if it breaks down after half or a quarter or a tenth that span, this mad contraption will already have long since fulfilled its purpose. Indeed the Clock may have accomplished its greatest task before it is ever finished, perhaps without ever being built at all. The point of the Clock of the Long Now is not to measure out the passage, into their unknown future, of the race of creatures that built it. The point of the Clock is to revive and restore the whole idea of the Future, to get us thinking about the Future again, to the degree if not in quite the way same way that we used to do, and to reintroduce the notion that we don’t just bequeath the future—though we do, whether we think about it or not. We also, in the very broadest sense of the first person plural pronoun, inherit it.

The Sex Pistols, strictly speaking, were right: there is no future, for you or for me. The future, by definition, does not exist. “The Future,” whether you capitalize it or not, is always just an idea, a proposal, a scenario, a sketch for a mad contraption that may or may not work. “The Future” is a story we tell, a narrative of hope, dread or wonder. And it’s a story that, for a while now, we’ve been pretty much living without.

Ten thousand years from now: can you imagine that day? Okay, but do you? Do you believe “the Future” is going to happen? If the Clock works the way that it’s supposed to do—if it lasts—do you believe there will be a human being around to witness, let alone mourn its passing, to appreciate its accomplishment, its faithfulness, its immense antiquity? What about five thousand years from now, or even five hundred? Can you extend the horizon of your expectations for our world, for our complex of civilizations and cultures, beyond the lifetime of your own children, of the next two or three generations? Can you even imagine the survival of the world beyond the present presidential administration?

I was surprised, when I read about the Clock of the Long Now, at just how long it had been since I had given any thought to the state of the world ten thousand years hence. At one time I was a frequent visitor to that imaginary mental locale. And I don’t mean merely that I regularly encountered “the Future” in the pages of science fiction novels or comic books, or when watching a TV show like The Jetsons (1962) or a movie like Beneath the Planet of the Apes (1970). The story of the Future was told to me, when I was growing up, not just by popular art and media but by public and domestic architecture, industrial design, school textbooks, theme parks, and by public institutions from museums to government agencies. I heard the story of the Future when I looked at the space-ranger profile of the Studebaker Avanti, at Tomorrowland through the portholes of the Disneyland monorail, in the tumbling plastic counters of my father’s Seth Thomas Speed Read clock. I can remember writing a report in sixth grade on hydroponics; if you had tried to tell me then that by 2005 we would still be growing our vegetables in dirt, you would have broken my heart.

Even thirty years after its purest expression on the covers of pulp magazines like Amazing Stories and, supremely, at the New York World’s Fair of 1939, the collective cultural narrative of the Future remained largely an optimistic one of the impending blessings of technology and the benevolent, computer-assisted meritocracy of Donald Fagen’s “fellows with compassion and vision.” But by the early seventies—indeed from early in the history of the Future—it was not all farms under the sea and family vacations on Titan. Sometimes the Future could be a total downer. If nuclear holocaust didn’t wipe everything out, then humanity would be enslaved to computers, by the ineluctable syllogisms of “the Machine.” My childhood dished up a series of grim cinematic prognostications best exemplified by the Hestonian trilogy that began with the first Planet of the Apes (1968) and continued through The Omega Man (1971) and Soylent Green (1973). Images of future dystopia were rife in rock albums of the day, as on David Bowie’s Diamond Dogs (1974) and Rush’s 2112 (1976), and the futures presented by seventies writers of science fiction such as John Brunner tended to be unremittingly or wryly bleak.

In the aggregate, then, stories of the Future presented an enchanting ambiguity. The other side of the marvelous Jetsons future might be a story of worldwide corporate-authoritarian technotyranny, but the other side of a post-apocalyptic mutational nightmare landscape like that depicted in The Omega Man was a landscape of semi-barbaric splendor and unfettered (if dangerous) freedom to roam, such as I found in the pages of Jack Kirby’s classic adventure comic book Kamandi, The Last Boy on Earth (1972-76). That ambiguity and its enchantment, the shifting tension between the bright promise and the bleak menace of the Future, was in itself a kind of story about the ways, however freakish or tragic, in which humanity (and by implication American culture and its values however freakish and tragic) would, in spite of it all, continue. Eed plebnista, intoned the devolved Yankees, in the Star Trek episode “The Omega Glory,” who had somehow managed to hold on to and venerate as sacred gobbledygook the Preamble to the Constitution, norkon forden perfectunun. All they needed was a Captain Kirk to come and add a little interpretive water to the freeze-dried document, and the American way of life would flourish again.

I don’t know what happened to the Future. It’s as if we lost our ability, or our will, to envision anything beyond the next hundred years or so, as if we lacked the fundamental faith that there will in fact be any future at all beyond that not-too-distant date. Or maybe we stopped talking about the Future around the time that, with its microchips and its twenty-four-hour news cycles, it arrived. Some days when you pick up the newspaper it seems to have been co-written by J. G. Ballard, Isaac Asimov, and Philip K. Dick. Human sexual reproduction without male genetic material, digital viruses, identity theft, robot firefighters and minesweepers, weather control, pharmaceutical mood engineering, rapid species extinction, US Presidents controlled by little boxes mounted between their shoulder blades, air-conditioned empires in the Arabian desert, transnational corporatocracy, reality television—some days it feels as if the imagined future of the mid-twentieth century was a kind of checklist, one from which we have been too busy ticking off items to bother with extending it. Meanwhile, the dwindling number of items remaining on that list—interplanetary colonization, sentient computers, quasi-immortality of consciousness through brain-download or transplant, a global government (fascist or enlightened)—have been represented and re-represented so many hundreds of times in films, novels and on television that they have come to seem, paradoxically, already attained, already known, lived with, and left behind. Past, in other words.

This is the paradox that lies at the heart of our loss of belief or interest in the Future, which has in turn produced a collective cultural failure to imagine that future, any Future, beyond the rim of a couple of centuries. The Future was represented so often and for so long, in the terms and characteristic styles of so many historical periods from, say, Jules Verne forward, that at some point the idea of the Future—along with the cultural appetite for it—came itself to feel like something historical, outmoded, no longer viable or attainable.

If you ask my eight-year-old about the Future, he pretty much thinks the world is going to end, and that’s it. Most likely global warming, he says—floods, storms, desertification—but the possibility of viral pandemic, meteor impact, or some kind of nuclear exchange is not alien to his view of the days to come. Maybe not tomorrow, or a year from now. The kid is more than capable of generating a full head of optimistic steam about next week, next vacation, his tenth birthday. It’s only the world a hundred years on that leaves his hopes a blank. My son seems to take the end of everything, of all human endeavor and creation, for granted. He sees himself as living on the last page, if not in the last paragraph, of a long, strange and bewildering book. If you had told me, when I was eight, that a little kid of the future would feel that way—and that what’s more, he would see a certain justice in our eventual extinction, would think the world was better off without human beings in it—that would have been even worse than hearing that in 2006 there are no hydroponic megafarms, no human colonies on Mars, no personal jetpacks for everyone. That would truly have broken my heart.

When I told my son about the Clock of the Long Now, he listened very carefully, and we looked at the pictures on the Long Now Foundation’s website. “Will there really be people then, Dad?” he said. “Yes,” I told him without hesitation, “there will.” I don’t know if that’s true, any more than do Danny Hillis and his colleagues, with the beating clocks of their hopefulness and the orreries of their imaginations. But in having children—in engendering them, in loving them, in teaching them to love and care about the world—parents are betting, whether they know it or not, on the Clock of the Long Now. They are betting on their children, and their children after them, and theirs beyond them, all the way down the line from now to 12,006. If you don’t believe in the Future, unreservedly and dreamingly, if you aren’t willing to bet that somebody will be there to cry when the Clock finally, ten thousand years from now, runs down, then I don’t see how you can have children. If you have children, I don’t see how you can fail to do everything in your power to ensure that you win your bet, and that they, and their grandchildren, and their grandchildren’s grandchildren, will inherit a world whose perfection can never be accomplished by creatures whose imagination for perfecting it is limitless and free. And I don’t see how anybody can force me to pay up on my bet if I turn out, in the end, to be wrong.

Long Now’s First Ever Member Summit: October 4, 02016

Posted on Friday, September 23rd, 02016 by Mikl Em
link   Categories: Announcements, Clock of the Long Now, Events, The Interval   chat 0 Comments

The Long Now Member Summit - Oct. 4, 02016

Our first ever global gathering is less than two weeks away!
Join us in San Francisco on October 4th, 02016.

In 01996: The Long Now Foundation was established to foster long-term thinking and responsibility in the framework of the next 10,000 years.

In 02007: The Long Now Foundation’s Membership program was launched. The list of our 1,000 Charter Members is here.

On October 4th, 02016 we will host the first ever global gathering of Long Now members. Our membership has grown to nearly 8,000 people around the world. It’s time we got together.

In celebration of Long Now’s 20th anniversary our Member Summit will be a day dedicated to long-term thinking. We will have components of the 10,000 Year Clock on display–which will later be installed in West Texas.

The Clock of the Long Now: actual components of our 10,000 Year Clock will be on display at the Summit

Our staff will give updates on our projects (including the Clock). Long Now founders and Board will be on stage, but we’ll also have talks & discussions led by Long Now members, hundreds of whom will travel to San Francisco for this event.

The Interval at Long Now, our bar/cafe/museum, will be at the center of the Summit. The Interval is full of Long Now-related information & artifacts, including Clock of the Long Now prototypes, passenger pigeons, thousands of books, and the art of Brian Eno.

There’s much more–dinner from Off The Grid food trucks, drinks from The Interval menu, a festival of short films about long-term thinking co-curated by our members, and more. Tickets are still available.

Join us at the Summit and help celebrate the first 20 years of Long Now!

Celebrating 20 years (so far) of Long Now
Featuring a keynote presentation by David Eagleman

Neuroscientist and author David Eagleman speaks at The Long Now Member Summit, October 4, 02016

Why build a 10,000 Year Clock?

Posted on Friday, November 20th, 02015 by Alexander Rose - Twitter: @zander
link   Categories: Clock of the Long Now   chat 0 Comments

Adam Weber and Jimmy Goldblum of Public Record released this short video about The Clock of The Long Now this week at the New York Documentary Film Festival and it can also be seen at The Atlantic.

Clock of the Long Now on Display at Deutsches Museum in Munich

Posted on Tuesday, September 15th, 02015 by Charlotte Hajer
link   Categories: Announcements, Clock of the Long Now   chat 0 Comments

Anthropozän_Spalte_de_cropFor the next twelve months, the first prototype of the Clock of the Long Now will be on display at the Deutsches Museum in Munich, Germany. It forms part of their Welcome to the Anthropocene exhibit – an interactive and multidisciplinary museum experience meant to prompt reflection and discussion about the notion of a ‘human era’.

“Spanning 1400 m2, the world’s first large exhibit on this important issue of the future reviews and surveys the concept of the Anthropocene through an analysis of such themes as urbanism, mobility, nature, evolution, nutrition, and human-machine interaction. The exhibit visualizes the history, present, and future of this human era, intersecting technology and the physical sciences with art and media. Historical exhibits guide us along our way through the Anthropocene, recent scientific discoveries and projects present challenges and potential solutions, and artistic design encourage contemplation.”

ClockAllWht1_00BFI-290px

This is the first time the Prototype has left London’s Science Museum since it was installed there, and the first time the prototype is on display in continental Europe. To learn more, you can explore the exhibit’s English-language catalog, German-language website, or take a virtual tour. Originally scheduled to run until January, the exhibit has already been extended to September 02016, and can be visited any time during museum opening hours, daily from 9 AM and 5 PM local time.

Alexander Rose speaking in Portland September 17th

Posted on Monday, August 31st, 02015 by Andrew Warner
link   Categories: Announcements, Clock of the Long Now   chat 0 Comments

Save-The-Date-Alexander-Rose-New-e1435864088868

On Thursday, September 17th, Alexander Rose (Executive Director of Long Now) will give a talk on how to design for 10,000 years, including how he approached many of the unique design challenges of The Clock.

Thursday, September 17th
5:30 – 7:30 pm
Lincoln Recital Hall (PSU)
1620 SW Park Avenue

General Admission: $10
Tickets available here!

 

From the City to the Great Basin: a Trip to Long Now’s Mountain in Nevada

Posted on Thursday, January 8th, 02015 by Mikl Em
link   Categories: Clock of the Long Now, Long Shorts, Long Term Science, The Big Here, The Interval   chat 0 Comments

The Big Here video documenting a drive from San Francisco to Mount Washington in eastern Nevada was made in 02009 and shown as a Long Short before Stewart Brand’s Rethinking Green SALT talk. We showed it again this week at The Great Basin in the Anthropocene talk by Scotty Strachan at The Interval. That event focused on the larger region that includes Mount Washington.

The mount Washington site was originally purchased as a potential site for a monument scale 10,000 Year Clock to act as an icon to long-term thinking. The first of these Clocks is now underway in Texas (see longnow.org/clock/ for more details), and Long Now remains involved in this fascinating, important region of eastern Nevada.

Our Mount Washington property is home to the largest population of bristlecone pines on private land. Bristlecones, amongst the oldest living things on Earth, are a symbol of The Long Now. And Long Now is working with scientists, like Scotty Strachan, at University of Nevada, Reno to study these bristlecones for insights into the last 10,000 years of climate amongst other research efforts.

Mt Washington bristlecone -- Scotty Strachan at The IntervalPhoto of Mount Washington by Scotty Strachan